наука о принципах и методах расчёта сооружений на прочность, жёсткость, устойчивость и колебания. Основные объекты изучения С. м. - плоские и пространственные стержневые системы (См.
Стержневая система) и системы, состоящие из пластинок (См.
Пластинки) и оболочек (См.
Оболочка)
. При расчёте сооружений учитывается целый ряд воздействий, главными из которых являются статические и динамические нагрузки и изменения температуры. Цель расчёта состоит в определении внутренних усилий, возникающих в элементах системы, в установлении перемещений (См.
Перемещения) её отдельных точек и выяснении условий устойчивости и колебаний системы. В соответствии с результатами расчёта устанавливаются размеры сечений отдельных элементов конструкций, необходимые для надёжной работы сооружения и обеспечивающие минимальные затраты материалов. Разрабатываемая в С. м. теория расчёта базируется на методах теоретической механики (См.
Механика)
, сопротивления материалов (См.
Сопротивление материалов)
, теорий упругости, пластичности и ползучести (см.
Упругости теория, Пластичности теория. Ползучесть)
.
Иногда С. м. называется теорией сооружений, имея при этом в виду весь комплекс указанных выше дисциплин, которые в современной науке о прочности настолько тесно взаимосвязаны, что точное установление их границ затруднительно. Другое (теперь уже устаревшее) название С. м. -
Статика сооружений - возникло в то время, когда в С. м. не включались вопросы динамического расчёта (см.
Динамика сооружений)
.
Основные методы С. м. Для выполнения расчёта сооружения устанавливают его расчётную схему (См.
Расчётная схема) (модель). С этой целью из реального сооружения мысленно удаляют элементы, воспринимающие только местные нагрузки и практически не участвующие в работе сооружения в целом, и получают идеализированную, упрощённую схему (как бы скелет) сооружения. Элементы сооружения на расчётной схеме условно изображаются в виде линий, плоскостей, а также некоторых кривых поверхностей. В соответствии с рассматриваемыми в С. м. системами сооружений различают расчётные схемы 3 видов: дискретные, состоящие из отдельных стержней или элементов, связанных между собой в узлах (фермы, рамы, арки); континуальные, состоящие, как правило, из одного непрерывного элемента (например, оболочки); дискретно-континуальные, содержащие наряду с континуальными частями также и отдельные стержни (например, оболочка, опирающаяся на колонны). В расчётах учитывается совместность (взаимосвязанность) деформаций всех элементов сооружения.
Встречающиеся на практике системы сооружений, в зависимости от методики их расчёта, подразделяют на 2 основных типа: статически определимые системы, которые могут быть рассчитаны с использованием только уравнений статики; статически неопределимые системы, для расчёта которых в дополнение к уравнениям статики составляются уравнения совместности деформаций.
При расчёте дискретных статически неопределимых систем (для которых справедлив принцип независимости действия сил) применяют 3 основных метода: метод сил, метод перемещений и смешанный. При расчёте по методу сил часть связей (см.
Связи в конструкциях)
в выбранной расчётной схеме сооружения "отбрасывается", с тем чтобы превратить заданную систему в статически определимую и геометрически неизменяемую (основную) систему. "Отброшенные" связи заменяют силами (т. н. лишними неизвестными), для определения которых составляют (исходя из условия тождественности деформаций основной и заданной систем) канонические уравнения. Найденные при решении этих уравнений лишние неизвестные "прикладываются" вместе с нагрузкой к основной системе как внешние силы, после чего определяются (методами сопротивления материалов) внутренние усилия в элементах системы и перемещения её отдельных точек. В отличие от метода сил, при методе перемещений основная система получается из данной путём наложения дополнительных (лишних) связей, с тем чтобы превратить её в сочетание элементов, деформации и усилия которых заранее изучены. За лишние неизвестные принимаются перемещения по направлению лишних связей. Для их определения составляется система уравнений, вытекающих из условия равенства нулю реакции в лишних связях. Смешанный метод представляет собой сочетание методов сил и перемещений; основная система образуется путём удаления одних и наложения др. связей. Поэтому лишними неизвестными являются и силы, и перемещения.
При расчёте континуальных статически неопределимых систем за неизвестные принимают функции перемещений или усилий, для определения которых составляют необходимые дифференциальные уравнения. В результате решения последних находят величины внутренних силовых факторов (усилий). Использование в расчётной практике ЭВМ позволяет применять для расчёта континуальных систем также и дискретные расчётные схемы. В этом случае континуальную систему разделяют на т. н. конечные элементы, которые соединяются между собой жёсткими или упругими связями. При расчёте систем с разделением их на конечные элементы применяется как метод сил, так и метод перемещений, причём, если выбор метода при расчёте традиционными способами связывался с количеством совместно решаемых уравнений, то с появлением ЭВМ предпочтение, как правило, отдаётся методу перемещений, позволяющему проще определять коэффициенты при неизвестных. Для определения перемещений упругих систем применяется формула Мора, полученная на базе основных теорем С. м., и, в частности, обобщённого принципа возможных (виртуальных) перемещений (см.
Возможных перемещений принцип)
.
При учёте пластических деформаций материала задача становится физически нелинейной, т.к. в этом случае принцип независимости действия сил неприменим. Встречаются также геометрически нелинейные системы, при расчёте которых вследствие значительной величины перемещений необходимо учитывать изменения геометрии системы и смещение нагрузки в процессе деформации. При расчёте нелинейных систем обычно применяется метод последовательных приближений, причём в пределах каждого приближения система считается упругой.
Важной задачей С. м. является изучение условий устойчивости и колебаний сооружений. При расчётах на устойчивость применяются статические, энергетические и динамические методы, с помощью которых определяются критические параметры, характеризующие совокупность действующих сил. Величины критических параметров (в простейших случаях - критических сил) зависят от геометрии сооружения, особенностей нагрузок и воздействий, а также от констант, характеризующих деформативность материала. Наиболее сложными являются расчёты сооружений на устойчивость при действии динамических сил. Теория колебаний в С. м., помимо методов определения частот и форм колебаний сооружений, содержит разделы, посвященные вопросам гашения вибраций, принципам и методам виброизоляции.
Использование ЭВМ позволяет широко применять при решении задач современной С. м. методы линейной алгебры с матричной записью не только систем уравнений, но и всех вычислений, связанных с определением силовых факторов и перемещений, критических нагрузок и т.д. В связи с этим составляются специальные алгоритмы и программы с полной автоматизацией всех вычислительных процессов.
Историческая справка. На разных этапах развития С. м. методы расчёта сооружений в значительной степени определялись уровнем развития математики, механики и науки о сопротивлении материалов.
До конца 19 в. в С. м. применялись графические методы расчёта, и наука о расчёте сооружений носила название "графическая статика". В начале 20 в. графические методы стали уступать место более совершенным - аналитическим, и примерно с 30-х гг. графическими методами практически перестали пользоваться. Аналитические методы, зародившиеся в 18 - начале 19 вв. на основе работ Л.
Эйлера
, Я.
Бернулли, Ж.
Лагранжа и С.
Пуассона
, были недоступны инженерным кругам и поэтому не нашли должного практического применения. Период интенсивного развития аналитических методов наступил лишь во 2-й половине 19 в., когда в широких масштабах развернулось строительство железных дорог, мостов, крупных промышленных сооружений. Труды Дж. К.
Максвелла
, А. Кастильяно (Италия), Д. И. Журавского (См.
Журавский) положили начало формированию С. м. как науки. Известный рус. учёный и инженер-строитель Л. Д.
Проскуряков впервые (90-е гг.) ввёл понятие о линиях влияния и их применении при расчёте мостов на действие подвижной нагрузки. Приближённые методы расчёта арок были даны франц.узским учёным Брессом, а более точные методы разработаны Х. С.
Головиным
. Существенное влияние на развитие теории расчёта статически неопределимых систем оказали работы К. О.
Мора, предложившего универсальный метод определения перемещений (формула Мора). Большое научное и практическое значение имели работы по динамике сооружений М. В. Остроградского (См.
Остроградский)
, Дж. Рэлея (См.
Рэлей)
, А.
Сен-Венана
. Благодаря исследованиям Ф. С. Ясинского (См.
Ясинский)
, С. П.
Тимошенко, А. Н.
Динника
, Н. В. Корноухова и др. значительное развитие получили методы расчёта сооружений на устойчивость. Крупные успехи в развитии всех разделов С. м. были достигнуты в СССР. Трудами сов. учёных А. Н.
Крылова
, И. Г.
Бубнова
, Б. Г.
Галёркина
, И. М.
Рабиновича
, И. П. Прокофьева, П. Ф.
Папковича
, А. А.
Гвоздева
, Н. С. Стрелецкого (См.
Стрелецкий)
, В. З.
Власова
, Н. И. Безухова и др. были разработаны методы расчёта сооружений, получившие широкое распространение в проектной практике. В научных учреждениях и вузах СССР созданы и успешно развиваются новые научные направления в области С. м. Важным проблемам С. м. посвящены исследования В. В. Болотина (теория надёжности и статистические методы в С. м.), И. И. Гольденблата (динамика сооружений), А. Ф.
Смирнова (устойчивость и колебания сооружений) и др.
Проблемы современной С. м. Одной из актуальных задач С. м. является дальнейшее развитие теории надёжности сооружений на основе использования статистических методов обработки данных о действующих нагрузках и их сочетаниях, о свойствах строительных материалов, а также о накоплении повреждений в сооружениях различных типов. Большое значение приобретают исследования по теории предельных состояний (См.
Предельное состояние)
, имеющие целью переход к практическому расчёту сооружений на основе вероятностных методов. Важная задача С. м. - расчёт сооружений как единых пространственных систем, без расчленения их на отдельные конструктивные элементы (балки, рамы, колонны, плиты и т.д.); она связана с необходимостью использования тех запасов несущей способности сооружений, которые не могут быть выявлены при поэлементном расчёте. Такой подход позволяет получать более точную картину распределения внутренних усилий в сооружениях и обеспечивает существенную экономию материалов. Расчёт сооружений как единых пространственных систем требует дальнейшего развития метода конечных элементов; последний даёт возможность рассчитывать весьма сложные сооружения на действие статических, динамических (в т. ч. сейсмических) и др. нагрузок. Большой научный интерес представляют: разработка методов решения физически и геометрически нелинейных задач, которые более полно учитывают реальные условия работы сооружений; изучение вопросов оптимального проектирования строительных конструкций с использованием ЭВМ; проведение исследований, связанных с разработкой теории разрушения сооружений, в частности, вопросов их "живучести"), что особенно важно для строительства в районах, подверженных землетрясениям.
Лит.: Тимошенко С. П., История науки о сопротивлении материалов с краткими сведениями по истории теории упругости и теории сооружений, пер. с англ., М., 1957; Строительная механика в СССР. 1917-1967, М., 1969; Киселев В. А., Строительная механика, 2 изд., М., 1969; Снитко Н. К., Строительная механика, 2 изд., М., 1972; Болотин В. В., Гольденблат И. И., Смирнов А. Ф., Строительная механика, 2 изд., М., 1972.
Под редакцией А. Ф. Смирнова.